Как работают двигатели
Принцип работы всех видов электродвигателей состоит во взаимодействии магнитных полей ротора и статора. При этом магнитное поле может создаваться постоянным магнитном или обмоткой (катушка-электромагнит).
В зависимости от мощности и типа мотора обмотки могут быть расположены только на статоре или и на статоре и на роторе. Попытаемся объяснить устройство и принцип работы для чайников в электрике.
Начнем с того, что рассмотрим устройство коллекторных электродвигателей. Например, в маленьких коллекторных двигателях постоянного тока, как для радиомоделей, на статоре расположены постоянные магниты, а в роторе намотаны катушки из медного провода. Ток к катушкам ротора такого электродвигателя подаётся через щеточный узел, состоящий из щеток и коллектора. На коллекторе расположены ламели, к которым присоединены выводы обмоток.
После включения питания ротор (якорь) начинает вращаться, на нём закреплен коллектор, а неподвижные щетки касаются попеременно разных пар ламелей коллектора. Через щетки и ламели к обмоткам ротора подаётся ток то на одну обмотку, то на другую, таким образом создавая изменяющееся магнитное поле, которое взаимодействует с полем магнита. В результате полюса вращающегося и неподвижного электромагнитов притягиваются, из-за чего и происходит вращение.
Если опустить некоторые нюансы, то чем больше ток ротора, тем больше это поле и тем быстрее вращается ротор. Однако это применимо в основном для коллекторных машин постоянного и переменного токов (они универсальны).
Если говорить об асинхронном двигателе (АД) с короткозамкнутым ротором — это электродвигатель переменного тока без щеток. В нем обмотки расположены на статоре (а), а ротор представляет собой стержни (б), замкнутые на коротко кольцами — так называемая беличья клетка.
В этом случае вращающееся магнитное поле статора порождает ток в стержнях ротора, из-за которого также возникает еще одно магнитное поле. А что происходит, когда рядом расположены два магнита?
Они отталкиваются или притягиваются друг к другу. Так как ротор закреплен на концах в подшипниках, то ротор начинает вращаться. АД предназначен только для переменного тока, и скорость вращения вала у него зависит от частоты тока и числа полюсов в обмотках статора, подробнее этот вопрос мы рассмотрим в статье об асинхронных электродвигателях.
Но для начала вращения вала такого двигателя важно либо толкнуть его (придать начальную скорость), либо создать вращающееся магнитное поле. Оно создаётся с помощью расположенных определенным образом обмоток, подключенным к трёхфазной электросети (например, 380В), или с помощью пусковых и рабочих конденсаторов (в т.н. конденсаторных асинхронных двигателях).
Кроме взаимодействия магнитных полей в во вращении вала электродвигателя участвует и сила Ампера.
Поэтому нужно понимать, что момент на валу абстрактного двигателя и число оборотов зависят от конструкции и вида электромашины, а также от силы тока и его частоты. Повторюсь, что в этой статье мы не будем углубляться подробно в особенности устройства каждого из видов и типов электродвигателей, а сделаем отдельные статьи для этого.
Стоит отметить, что асинхронные и универсальные коллекторные двигатели наиболее распространены в быту и на производстве, в приводах строительных машин. Они используются везде, как для движения промышленных механизмов, так и для автомобилей, электротранспорта и используемых в бытовой технике, вплоть до электрической зубной щетки.
Основная классификация
Итак, электродвигатели главным образом делятся на машины, работающие от постоянного тока, а также от переменного тока. Чем отличается переменный ток от постоянного, мы рассказывали в статье: https://samelectrik.ru/chem-otlichaetsya-peremennyj-tok-ot-postoyannogo.html. Типы электрических двигателей рассмотрим с машин, работающих от переменки.
Двигатели переменного тока
Большинство электрических машин, используемых на производстве и в повседневной жизни, для привода лифтов, в других видах электропривода работают от переменного тока.
Двигатели переменного тока можно классифицировать следующим образом:
- асинхронные;
- синхронные.
При этом асинхронные двигатели различают либо по конструкции ротора:
- с короткозамкнутым ротором (наиболее распространены с любым числом фаз);
- с фазным ротором (только трёхфазные).
И по количеству фаз:
- однофазные (с пусковым конденсатором) используются в бытовых электровентиляторах и других маломощных устройствах;
- конденсаторные или двухфазные (это однофазные с конденсатором, который не отключается во время работы, за счет чего создаётся «вторая» фаза) используются в небольших насосах, вентиляции, на стиральных машинах типа «малютка» и старых моделей производства СССР;
- трёхфазные распространены больше всего и используются повсеместно на производстве.
Есть разные конструкции однофазных АД, в списке приведены два основных варианта!
Особенностью всех асинхронных электродвигателей является то, что частота вращения ротора немного меньше скорости вращения магнитного поля статора и равняется:
где n – число оборотов в минуту, f – частота питающей сети, p – число пар полюсов, s – скольжение, а «60» — секунд в минуте.
Таким образом частота вращения ротора определяется частотой питающей сети, конструкцией обмоток, а вернее числом пар полюсов (катушек) в ней и величиной скольжения.
Скольжение – это величина, которая характеризует насколько меньше частота вращения ротора относительно частоты вращающегося магнитного поля. При нормальных режимах работы лежит в пределах 0,01-0,06. Если говорить простым языком, то поле в статоре с одной парой полюсов вращается со скоростью:
60*50/1=3000 об/мин
При двух парах — 1500 об/мин, а при трёх парах — 1000 об/мин.
При скольжении, допустим, в 0,05, частота вращения ротора будет равняться:
3000*(1-0,05)=2850 об/мин
Для регулировки оборотов таких электродвигателей используют частотные преобразователи, так как на остальные переменные, приведенной выше формулы, мы повлиять не можем.
Наиболее распространены в России асинхронные двигатели с напряжением питания 220В для соединения обмоток по схеме треугольника и 380В по схеме звезды.
Если в трёхфазной электрической машине вращающееся поле статора создаётся расположением обмоток и сдвигом фаз в сети на 120˚, то в однофазных такого эффекта не наблюдается. Вал будет вращаться, если задать ему первоначальное вращение, крутнув вал рукой или установив фазосдвигающий конденсатор, который создаст сдвиг фазы на пусковой обмотке.
Двухфазные конденсаторные двигатели устроены подобным образом, но вторая обмотка не отключается после пуска, а продолжает работать через конденсатор. Поэтому название «двухфазные» скорее относится к конструкции и схеме подключения, а не к цепям питания. И двухфазные, и однофазные рассчитаны на работе от сети 220В.
Синхронные электродвигатели (СД) почти всегда выполняются с обмоткой возбуждения на якоре, и ток возбуждения на неё передается либо через щеточный узел, либо наводится с помощью электромагнитной системы.
Это нужно для того, чтобы его вал вращался с частотой, совпадающей с частотой вращения поля статора. То есть такого параметра как скольжения в этом случае нет.
Ток возбуждения подаётся от специальных систем возбуждения, таких как «генератор-двигатель» или электронных преобразователей на тиристорах или транзисторах. Наиболее распространены на отечественных предприятиях такие приборы как ВТЕ, ТВУ и пр.
Не всегда есть обмотка возбуждения и щетки, например, в микроволновой печи в приводе вращения тарелки используется синхронный двигатель с постоянными магнитами.
Синхронные машины бывают явнополюсными и неявнополюсными. Визуальные отличия заключаются в конструкции ротора, на практике есть разница и в их характеристиках, методах производства и конструкции. На практике обычному домашнему электрику вряд ли с ними придётся столкнуться.
Остаётся сказать главное о двигателях переменного тока – они плохо поддаются регулировке скорости вращения из-за того, что их обороты привязаны к скорости. Уменьшение напряжения (тока) на статоре или возбуждения (у синхронных и асинхронных с фазным ротором) приводит к падению момента и увеличению величины скольжения (у АД), при этом вал может вращаться медленнее. Чтобы регулировать обороты таких двигателей, вам нужен частотный преобразователь. О том, как выбрать частотник, мы рассказали в статье: https://samelectrik.ru/vybor-chastotnogo-preobrazovatelya.html.
Двигатели постоянного тока (ДПТ)
Существуют следующие виды и типы электродвигателей постоянного тока:
- Коллекторные двигатели постоянного тока. Состоят из магнитов или катушки возбуждения и якоря, ток к обмотке якоря передаётся с помощью щеточного узла, недостатком которого является постепенный износ.
- Универсальные коллекторные двигатели. Похожи на предыдущие, но могут работать и от постоянного и от переменного тока.
- Бесколлекторный или бесщеточный. Состоит из обмоток статора, на роторе устанавливают постоянные магниты. Подключается к цепи постоянного тока через специальный контроллер, переключающий обмотки статора.
Коллекторные двигатели можно разделить на группы по типу возбуждения:
- с самовозбуждением;
- с независимым возбуждением.
По типу подключения обмоток возбуждения различают следующим образом:
- Последовательное возбуждение позволяет получить высокий момент на валу, но обороты холостого хода также очень высокие и могут повредить двигатель (пойдёт в разнос).
- Параллельное возбуждение — в этом случае обороты стабильнее и не изменяются под нагрузкой, но момент на валу меньше.
- Смешанное возбуждение совмещает достоинства обоих типов.
У маломощных коллекторных ДПТ возбуждение чаще всего организовано с помощью постоянных магнитов.
При независимом возбуждении у коллекторного электродвигателя обмотки статора и ротора не соединены друг с другом, а в сущности питаются от разных источников. Таким образом можно организовать регулировку момента или оборотов, а также добиться большей энергоэффективности.
В зависимости от конструкции такой электродвигатель может работать или только от постоянного тока, или работать от переменного и постоянного. Во втором случае их называют «универсальный коллекторный двигатель». Они широко распространены в быту, используются в кухонной технике и электроинструменте (болгарки, дрели и т.д.).
Бесколлекторные двигатели лишены недостатков, присущих коллекторным, за счет отсутствия щеточного узла. Ток подаётся к трём обмоткам статора, а обмотки переключаются с помощью контроллера. Фактически бесщеточные ДПТ питаются преобразованным переменным током. Принцип работы этих двигателей вы можете узнать, посмотрев следующее видео:
По устройству они похожи на синхронные двигатели, за исключением того, что используются постоянные магниты, а не электромагниты. Для вращения такого двигателя и повышения эффективности его работы используются датчики Холла для определения положения вала и правильного переключения обмоток.
Часто их называют вентильными двигателями, а в англоязычных источниках подобные двигатели, в зависимости от конструкции, называют PWSM или BLDC.
Они используются в компьютерных кулерах, в качестве привода для радиоуправляемых моделей, таких как квадрокоптеры, а также в моторколесе для велосипеда.
Дополнительная классификация
Кроме рассмотренных выше двигателей следует сказать о других видах, таких как:
- шаговые;
- сервоприводы;
- линейные;
- двигатели пульсирующего тока (похож на двигатель постоянного тока, отличием является то, что питание осуществляется выпрямленным пульсирующим током).
Шаговые двигатели и сервоприводы используются там, где нужно позиционировать узел какого-то механизма. Простейший пример – ЧПУ, 3D-принтер и прочее. Также с помощью «шаговиков» иногда управляют положением дроссельной заслонки автомобиля – и это лишь малая часть их применения.
Описание функций и особенностей этих видов электропривода – это тема для отдельной статьи. Если вам интересно, пишите комментарии и мы её опубликуем!
Линейный двигатель, в отличии от всех выше перечисленных, движение его вала не вращательное, а поступательное. То есть он не крутится, а двигается «вперед-назад». Они бывают разными:
- переменного тока по принципу действия похожие на синхронные и асинхронные электродвигатели;
- постоянного тока;
- пьезоэлектрические;
- магнитострикционные.
На практике встречаются редко, используются в качестве привода для монорельсовой железной дороги, для подачи рабочего органа в различных станках.
Однако приведенная в статье классификация была выбрана с точки зрения практичности, в литературе же предлагают разделять электропривод по следующим критериям.
По специфике создающегося вращательного момента:
- гистерезисные;
- магнитоэлектрические.
Следующий вариант классификации основан на различиях конструкции и особенности их конструктивного исполнения.
По типу и расположению вала:
- с горизонтальным расположением вала;
- с вертикальным размещением вала.
Защите от действий внешней среды:
- защищённые от повышенной влажности и пыли;
- для эксплуатации во взрывоопасных помещениях.
По продолжительности режима работы:
- повторно-кратковременный (лебедки, краны, двигатели задвижек);
- для продолжительного режима работы (насосы, вентиляция и т.д.).
По мощности также можно различать машины малой, средней, большой мощности. Однако пределы этих мощностей приводить не имеет смысла, поскольку где-то 6 МВт – это средняя мощность, а где-то 1 кВт – это колоссальное число.
Подробно рассмотреть все виды в пределах одной статьи невозможно, поэтому мы рассмотрим каждый вариант исполнения по отдельности. Надеемся, предоставленная вкратце классификация помогла вам понять, какие бывают типы электродвигателей постоянного и переменного тока, а также в чем их различия и особенности применения!
Материалы по теме:
- Как получают переменный электрический ток
- Типы стабилизаторов напряжения
- Как сделать простейший электродвигатель своими руками
Опубликовано 10.04.2019 Обновлено 10.04.2019 Пользователем Александр (администратор)
«Бесколлекторный или бесщеточный. Состоит из обмоток статора, на роторе устанавливают постоянные магниты. Подключается к цепи постоянного тока через специальный контроллер, переключающий обмотки статора.»
Вот только это двигатель ПЕРЕМЕННОГО тока. А постоянным током питается контроллер, который и превращает постоянный ток в переменный с контролем его частоты.
Линейные двигатели широко используются в металлорежущих станках и станках для электро-физической обработки как замена совокупности двигателя вращательного движения и тягового механизма.
Например. линейные двигатели 1FN3 фирмы Siemens