Автор:
Эксперт раздела "Вопрос электрику", автор статей. Электромонтер по ремонту и обслуживанию электрооборудования, опыт работы более 5 лет.

В настоящее время изолированную нейтраль сложно встретить в быту, вы никогда с ней не столкнетесь, если делаете проводку в квартирах. В то время как высоковольтных линиях она активно используется, а также в некоторых случаях и в сетях 380В. Подробнее о том, что такое сеть с изолированной нейтралью и какие у нее особенности, мы расскажем простыми словами в этой статье.

Что это такое

Определение понятия «изолированная нейтраль» приведено в главе 1.7. ПУЭ, в пункте 1.7.6. и ГОСТ Р 12.1.009-2009. Где сказано, что изолированной называется нейтраль у трансформатора или генератора, не присоединенная к заземляющему устройству вообще, или, когда она присоединена через приборы защиты, измерения, сигнализации.

Схемы изолированной и глухозаземленной нейтрали

Нейтралью называется точка, в которой соединены обмотки у трансформаторов или генераторов при включении по схеме «звезда».

Среди электриков есть заблуждение о том, что сокращенное название изолированной нейтрали – это система IT, по классификации п. 1.7.3. Что не совсем верно. В этом же пункте сказано, что обозначения TN-C/C-S/S, TT и IT приняты для сетей и электроустановок напряжением до 1 кВ.

В той же главе 1.7 ПУЭ есть пункт 1.7.2. где сказано, что в отношении мер электробезопасности электроустановки делятся на 4 типа — изолированную или глухо заземленную до 1 кВ и выше 1 кВ.

Таким образом есть некоторые отличия в безопасности и применении такой сети в разных классах напряжения и называть линию 10 кВ с изолированной нейтралью «система IT» по меньше мере неправильно. Хотя схематически – почти тоже самое.

В сетях до 1 кВ

Общие сведения

Давайте разберемся где, как и в каких случаях используют изолированную нейтраль в электроустановках напряжением до 1000 В, так называемую систему IT. В ПУЭ главе 1.7. п. 1.7.3. дано определение похожее на то, что приведено выше, но оно несколько отличается. Там сказано, что корпуса и другие проводящие части в установках системы IT должны быть заземлены. Рассмотрим, как это выглядит на схеме.

Схема установки с изолированной нейтралью

Так как нейтраль трансформатора сети IT не соединена с землёй, то, говоря простым языком, у нас нет опасной разности потенциалов между землёй и фазными проводами. И случайное касание 1 провода под напряжением в системе IT безопасно. Из-за относительно низкого напряжения здесь пренебрегают емкостной проводимостью фаз.

В сетях с изолированной нейтралью нет выраженных фазы и нуля – оба проводника равноправны.

Ток через тело человека равняется:

Iч = 3Uф/(3rч+ z)

Uф — фазное напряжение; rч — сопротивление тела человека (принимается 1 кОм); z — полное сопротивление изоляции фазы относительно земли (составляет 100 кОм и более на фазу).

Ток в этом случае возвращается к источнику питания через изоляцию проводов, а не в землю, как в случае с TN.

Так как сопротивление изоляции более 100 кОм на фазу, то сила тока через тело будет составлять единицы милиампер, что не причинит вреда.

Следующей особенностью этой системы является то, что токи утечки на корпус и токи КЗ на землю будут низкими. В результате защитная автоматика (релейная или автоматические выключатели) не срабатывают тем образом, к которому мы привыкли в сетях с глухозаземленной нейтралью. Но срабатывает система контроля сопротивления изоляции.

Соответственно при однофазном замыкании трёхфазной линии – система продолжит функционировать. При этом относительно земли возрастает напряжение на двух оставшихся проводах. Если человек коснется фазного провода – он попадает под линейное напряжение.

Обрыв в сети с изолированной нейтралью

В связи с такой конструкцией в сети с изолированной нейтралью нет двух видов напряжения в отличии от глухозаземленной, где между фазами Uлинейное (в быту 380В), а между фазой и нулём Uфазное (220В). Для подключения однофазной нагрузки к сети системой IT с напряжением 380В можно использовать понижающие трансформаторы типа 380/220 и подключать приборы между двумя фазами на линейное напряжение.

Сфера применения

Поговорим о том, где используются такое решение. Эта система электроснабжения применялась в отечественных электросетях для передачи электроэнергии жилым домам, во времена СССР. Особенно для электрификации деревянных домов, где при использовании глухозаземленной нейтрали повышался риск возникновения пожара при замыканиях на землю.

С точки зрения электробезопасности разница между изолированной и глухозаземленной нейтралью в электроснабжении домов, заключается в том, что если в сети IT один из проводников коснётся заземленных токопроводящих частей, например арматуры стен или водопровода, сеть продолжит функционировать, из-за малых токов утечки.

Соответственно ни жители, ни кто-то другой не узнает о проблеме, пока при одновременном касании кем-то одного из проводов и трубопровода – кого-то не ударит током.

Касание к токопроводящей части

В системе с глухозаземленной нейтралью как минимум сработает дифзащита, а при «хорошем» металлическом замыкании – отключится автоматический выключатель. С началом массового строительства панельных домов (т.н. хрущевок) от неё отказались и в 60-80-х годах перешли на TN-C, а в конце 90-х годов на TN-C-S, о причинах читайте ниже.

В настоящее время изолированная нейтраль используется везде, где нужно обеспечить повышенную безопасность или нет возможности сделать нормальное заземление, а именно:

  • В море — на судах, нефте- и газодобывающих платформах, где использование корпуса платформы в качестве заземления невозможно в связи с анодной защитой, а в местах стекания тока в воду она начнет усиленно ржаветь и гнить.
  • В шахтах и других местах добычи ископаемых (с напряжением 380-660В).
  • В метро.
  • На освещении и цепях управления в стационарных грузоподъёмных кранах и пр.
  • Также в бытовых бензиновых, газовых или дизельных генераторах на выходных клеммах именно изолированная нейтраль.

Она может встречаться не только в том виде, что мы привели на схеме выше, но и в виде понижающих и разделительных трансформаторов, которые используются для питания переносных осветительных приборов (не более 50В или 12В ПТЭЭП п.2.12.6.) и другого оборудования или инструмента, в том числе и тех, с которыми работают в замкнутых и сырых помещениях.

Подведем итоги

Мы разобрались для чего нужна изолированная нейтраль до 1 кВ, теперь перечислим достоинства и недостатки системы электроснабжения с изолированной нейтралью для чайников в электрике.

Преимущества использования:

  1. Большая безопасность.
  2. Большая надежность, что позволяет использовать, например, для освещения в больницах.
  3. Экономический фактор – в трёхфазной сети с изолированной нейтралью можно передать электроэнергию по минимально возможному количеству проводов – по трём.
  4. Система продолжит работу при однофазных замыканиях на землю.

Недостатки:

  1. При замыкании на землю повышается опасность использования, так как продолжается подача электроэнергии.
  2. Малые токи КЗ.
  3. Нет искр при первичном КЗ.

В сетях выше 1000 В

В настоящее время изолированная нейтраль чаще всего используется в сетях со средним классом напряжения (1-35 кВ). Для сети 110 кВ и выше – глухозаземленная. В связи с тем, что при КЗ на землю напряжение, как было сказано, возрастает до линейного, так в ЛЭП 110 кВ фазное напряжение (между землёй и фазным проводом) – 63,5 кВ. При КЗ на землю это особенно важно, и позволяет снизить расходы на изоляционные материалы.

Опоры 10 кВ

Кстати в КТП с высшим напряжением до 35 кВ первичные обмотки трансформаторов соединяются в треугольник, где нейтрали нет как таковой.

Высоковольтный трансформатор

Низкие токи КЗ и возможность работать при однофазных КЗ на ВЛ – в распределительных сетях особенно важны и позволяют организовать бесперебойное электроснабжение. При этом угол сдвига между оставшимися в работе фазами остаётся неизменным — в 120˚.

При напряжениях в тысячи вольт емкостной проводимостью фаз пренебречь нельзя. Поэтому касание проводов ВЛЭП опасно для жизни человека. В нормальном режиме токи в фазах источника определяются суммой нагрузок и емкостных токов относительно земли, при этом сумма емкостных токов равна нулю и ток в земле не проходит.

Если опустить некоторые подробности, чтобы изложить языком, понятным для начинающих, то при КЗ на землю напряжение относительно земли поврежденной фазы приближается к нулю. Так как напряжения двух других фаз увеличиваются до линейных значений их емкостные токи увеличиваются в √3 (1,73) раз. В результате емкостный ток однофазного КЗ оказывается в 3 раза большим нормального. Например, для ВЛЭП 10 кВ длиной 10 км емкостный ток равен примерно 0,3 А. При замыкании фазы на землю через дугу в результате различных явлений возникают опасные перенапряжения до 2-4Uф, что приводит к пробою изоляции и междуфазному КЗ.

Открытое РУ на подстанции

Для исключения возможности возникновения дуг и устранения возможных последствий нейтраль соединяют с землёй через дугогасящих реактор. Его индуктивность при этом подбирают согласно ёмкости в месте КЗ на землю, а также чтобы он обеспечивал работу релейной защиты.

Схемы замещения сети с изолированной нейтралью

Таким образом благодаря реактору:

  1. Намного уменьшается Iкз.
  2. Дуга становится неустойчивой и быстро гаснет.
  3. Замедляется нарастание напряжения после гашения дуги, в результате уменьшается вероятность повторного возникновение дуги и коммутационного тока.
  4. Токи обратной последовательности малы, следовательно, их действие на вращающейся ротор генератора не оказывает существенного влияния.

Перечислим плюсы и минусы высоковольтных сетей с изолированной нейтралью.

Преимущества:

  1. Какое-то время может работать в аварийном режиме (при КЗ на землю)
  2. В местах неисправности появляется незначительный ток, при условии малой емкости тока.

ВЛЭП 10 кВ

Недостатки:

  1. Усложнено обнаружение неисправностей.
  2. Необходимость изоляции установок на линейное напряжение.
  3. Если замыкание продолжается длительное время, то возможно поражение человека электрическим током, если он попадёт под шаговое напряжение.
  4. При 1-фазных КЗ не обеспечивается нормальное функционирование релейной защиты. Величина тока замыкания напрямую зависит от разветвленности цепи.
  5. Из-за накапливания дефектов изоляции от воздействия на нее дуговых перенапряжений снижается срок её службы.
  6. Повреждения могут возникнуть в нескольких местах из-за пробоя изоляции, как в кабелях, так и в электродвигателях и других частях электроустановки.

На этом обзор принципа действия и особенностей сетей с изолированной нейтралью заканчивается. Если вы хотите дополнить статью или поделится опытом – пишите в комментариях, мы обязательно опубликуем!

Материалы по теме:

Опубликовано 18.03.2019 Обновлено 18.03.2019 Пользователем Александр (администратор)

(10 голосов)
Загрузка...
Обсудить на форуме

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

÷ two = 3